
What happens
when your
browser knocks
Web Applications Explained with Python

We all know the basics

THE
INTERNET

HTTP
SERVER

USER

WHAT
REALLY

HAPPENS
HERE?

It's a PHP World

<html>
 <head>
 <title>PHP Test</title>
 </head>
 <body>
 <?php echo '<p>Hello World</p>'; ?>
 </body>
</html>

I just throw index.php inside my website
directory and it works!

What really happened?
We get in touch with the
webserver on port 80

We tell him that we want
the path "/" for the
website test.axantweb.
com

We get back an answer
that looks like "Hi! I'm
nginx and here is the
content you asked me
for"

Somehow, what's behind
My Apache HTTP server received request "GET /"

The virtual host manager of apache see the "Host: test.axantweb.
com" line inside my request and looks for the configuration of that
virtual host

Apache sees there is no path it can handle and decides to look for
index.html, index.php or other index files. It finds my index.php!

Apache doesn't understand a single word of what it is inside of
index.php so it looks for something registered to handle that kind
of files.

Apache finds mod_php and asks him to do something

Not the end
mod_php reads the content and parses it to run php code inside
<?php tags

URL parameters are parsed using the urlencode format and
placed inside $_GET

In case of POST data, Body of the request is parsed using the
related request content type. Usually urlencode or multipart and
ends being the $_POST

output of our script is sent back to apache

apache sends it back to our user

Serving a Request
1. Parse HTTP Request
2. Route the Request to some code
3. Parse Request parameters
4. Parse Request Body
5. Generate an answer
6. Send the Answer to the client

mod_php does most of this for us, but the webserver
will usually do only point 1 and 6. Understanding the
other parts is great tool to write efficient and reliable
applications.

Web Apps Evolution
CGI: Each application was an executable file,
the webserver would call it and get its output.
Very Slow!
mod_php, mod_python and so on: Tightly
coupled with web server, hard to implement
custom dispatch
Modern Gateway Interfaces: HTTP server
agnostic, optimized for performances, can
easily do custom dispatch. WSGI is the Python
one.

It's a Python World

My HTTP server receives the request "GET /"

The WSGI handler runs our WSGI application and sends the
output back to the HTTP server

the HTTP server sends the output back to our user

The HTTP server forwards the request to the WSGI handler so that
it can format it accondingly to the WSGI protocol

WSGI Applications
def hello_world(environ, start_response):
 start_response('200 OK', [('Content-type', 'text/plain')])
 return ['Hello world!\n']

We are in charge of:
● Routing request, all the paths will all end to our wsgi

application
● Building the response
● Parsing request path
● Parsing query parameters (php $_GET)

● Parsing POST body and its parameters (php $_POST)

Parsing Query Args
(urlencoded)
Most requests involve URL like: /index?param1=v1¶m2=v2
Our web framework, being it mod_php or anything more complex has to parse
the URL and extract the parameters.

Multipart Encoding
Multipart form-data encoding is usually involved when sending files.
The boundaries are usually randomly generated and searched for inside the
data that has be sent to make sure that they don't occur inside the data itself. In
case of an occurrence a new boundary is generated.

I really don't want to!
You don't want to parse parameters, handle
routing and so on by yourself. Those are all
complex things that all the frameworks around
will do for you.

But if you want to, you can get started at
Python development without having to
configure or install anything on your machine
(apart python itself).

Serving Python
from wsgiref.simple_server import make_server

def hello_world_app(environ, start_response):
 status = '200 OK' # HTTP Status
 headers = [('Content-type', 'text/plain')] # HTTP Headers
 start_response(status, headers)
 return ["Hello World"]

httpd = make_server('', 8000, hello_world_app)
print "Serving on port 8000..."
httpd.serve_forever()

The Environ
The WSGI environ variable is a dictionary
where our webserver will place all the data he
knows about.

All the HTTP Request headers will be available
in a key with the header name preceded by
HTTP_. The Host header for example will be
available as HTTP_HOST.

environ.py

Routing
How do I manage /index, /articles or even
/article/5? This is what routing does!

Regular Expressions: All the routes that match a given
regular expression will go to a function or class
Object Dispatch: Routes are splitted on / as the path of an
object and its parents, last entry is the method of the object
to call
Traversal: Like ObjectDispatch but uses dictionaries
instead of objects.

Template Engines
HTML has often to be
dinamically generated and
appending strings is not the
best way to do it.

Template Engines permit to
generate HTML without
effort.

<?php tag of mod_php can
be seen as a minimalistic
template engine

${%def test(x):}
 ${x}
${%end}
<html>
 <head>
 <title>${title}</title>
 </head>
 <body>
 ${%for i in range(5):}
 ${%test(i)}
 ${%end}
 </body>
</html>

How Template Engines
Work

Everything Together
THE
INTERNET

HTTP
ServerWSGI HandlerRouter

Controller Template Engine

Storing Data
Most web frameworks provide for us a way to
store data on server or on client and to match
those.

Most commonly:
● Cookies
● Authentication
● Sessions

Cookies
Cookies are the foundation of Sessions and
Authentication. Without them we wouldn't be
able to track the user when he gets back

They are implemented using two HTTP
headers: Cookie and Set-Cookie

mod_php $_COOKIES and setcookie are
actually wrappers around those headers.

cookies.py

How Cookies are managed
def setcookie(headers, name, value):
 cookie = '%s=%s' % (name, value)
 headers.append(('Set-Cookie', cookie))

def getcookies(environ):
 cookies = {}
 for cookie in environ['HTTP_COOKIE'].split(';'):
 name, value = cookie.split('=')
 cookies[name.strip()] = value.strip()
 return cookies

def delcookie(headers, name):
 headers.append(('Set-Cookie', '%s=;max-age=0' % name))

When we want to set or update a
cookie we send back a Set-Cookie
header that will look like: Set-Cookie
name=value

Cookies are passed inside multiple
Cookie headers, WSGI will group
them for us but we will have to parse
them.

A quick way to delete a cookie is to
set it with a maximum duration o 0
seconds.

Actually there is much more, like cookie Path,
Expiration and so on.

Request & Response
objects
Most Python frameworks have the concept of
the so called Request and Response objects.
Those are objects that represent your browser
request and the response you will send back.
Most common implementation is WebOb
module which is used by Google AppEngine,
TurboGears2, Pyramid, Pylons and many other
frameworks.

wob.py

Facing Truth
You don't want to manage this complexity by
youself, always rely on a Web Framework

